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The application of slender-body theory to the evaluation of the three-dimensional 
surface velocities induced by a boundary layer on an elliptic cylinder is con- 
sidered. The method is applicable when the Reynolds number is sufficiently 
large so that the thin-boundary-layer approximation is valid. The resulting 
potential problem is reduced to a two-dimensional consideration of the flow over 
an expanding cylinder with porous boundary conditions. The limiting solutions 
for a flat plate of finite span and a nearly circular cross-section are obtained in a 
simple analytic form. In  the former case, within the limitations of slender-body 
theory, the results are in exact agreement with the complete three-dimensional 
solution for this geometry. 

1. Introduction 
Three-dimensional potential flow fields induced by boundary layers, in par- 

ticular on surfaces with locally large or even infinite transverse curvature,? are 
extremely difficult to determine by analytic or even numerical methods. Only a 
limited group of analyses, for very specific geometries, is at  present available. 
These include the quarter-plate investigations of Stewartson & Howarth (1970) 
and Stewartson (1961) and the cruciform studies of Rubin (1966), Pal & Rubin 
(1971) and Rubin & Grossman (1971). 

One of the difficulties associated with the determination of boundary-layer 
interactions of this type is the complexity of the three-dimensional potential 
problem that arises when the displacement-induced flow field is to be evaluated. 
From this potential-flow solution, boundary-layer-induced velocities are deter- 
mined. With a systematic application of singular perturbation methods, the 
induced velocity distributions along the surface become the necessary asymptotic 
matching conditions for the cross-flow boundary-layer analysis, as well as for 
higher-order boundary-layer considerations. The cross-flow direction is defined 
here to be along the surface and normal to the direction ofthe undisturbed stream, 
i.e. in the direction of w in figure 1. 

Since the cross-flow and second-order boundary-layer analyses require, as 
asymptotic boundary conditions, only the potential velocities evaluated along 

t That is, when the local cross-sectional curvature multiplied by the local boundary- 
layer thickness is 0 ( 1 )  or larger. 
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FIGURE 1. Flow geometry. 

the surface, the slender-body theory of Munk, Jones & Ward, for many years a 
powerful approximation in inviscid aerodynamic theory, is adapted here to 
treat high Reynolds number incompressible flow over an elliptic cylinder. 

If  the Reynolds number R, = Ualv based on free-stream values and a typical 
body dimension a, see figure 1, is assumed to be large, a thin boundary layer 
develops over the cylinder. Furthermore, if the transverse curvature of the 
cylinder is nowhere large, to lowest order in a curvature parameter A*/a a 
Blasius boundary layer with thickness A* - d forms along the generators of 
the cylinder (Cooke 1957). This solution is independent of the azimuthal angle 
w and exhibits zero cross-flow velocity. A* is the displacement thickness defined as 

where u is the local velocity in the s co-ordinate direction, measured along the 
undisturbed stream, and y is measured locally normal to the surface; see figure 1. 

Boundary regions with locally large or infinite transverse curvature such as 
occur a t  the edges of a highly eccentric elliptic cross-section or in the flow near 
a blunted nose cap attached to the cylinder must be treated separately by local 
singular perturbation analyses; see Rubin (1966) and Van Dyke (1964). For the 
downstream flow considered here, the effect of the nose is assumed to be small; 
see Seban & Bond (1951). 

The boundary-layer-induced potential flow is determined from the solution of 
the mass-continuity and irrotationality equations of the inviscid flow. Therefore 
the perturbation velocity potential q5 satisfies 

$83 + hl+ A s  = 0,  (2) 

where y and x denote the cross-plane directions (see figure 1). 
The surface boundary layer perturbs the outer inviscid flow in much the same 

way as does a streamwise variation in body cross-sectional area. An 'effective 
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slender body ' of slowly varying cross-sectional area is formed by the cylinder 
plus the boundary-layer displacement thickness A*. From slender-body theory, 
see Ward (1955, p. 195), a first approximation to (2) valid in the vicinity of the 
body surface is known to be 

&I/ + itz = 0. (3) 

This reduction is possible locally if discontinuities in streamwise or azimuthal 
curvature do not appear, and if the body is slender in the sense that the typical 
cross-sectional dimension is small compared with the longitudinal dimension 1 
or distances. 

If a thin Blasius boundary layer forms on the cylinder, then A*la < I,  where 
A'ls = O(R;*) and R, = R,sfa. Therefore, the boundary-layer plus slender- 
body conditions lead to the following range of validity for the present theory: 

1 < s la  6 R,. 

5% Y, 2) = $AY> 2; 8) + bo(s), 

(4) 

The general solution of (3) is of the form 

( 5 4  

where, for the incompressible flow considered here, 

S(s) denotes the local cross-sectional area of body of length I, and in the present 
context can be interpreted as a modified cross-section, taken to include the dis- 
placement boundary layer. Therefore, the original three-dimensional potential 
problem (2) is replaced by a much simpler two-dimensional problem (3) for the 
boundary-layer-induced flow. 

The error in the approximate solution (3) can be assessed by evaluating 
the Poisson equation for the next-order perturbation potential qY1) due to the 
neglected 4::' term. This procedure is discussed briefly in Ashley & Landahl 
(1965, p. 99) and Ward (1955, p. 196). An analysis for am axisymmetric circular 
cylinder plus displacement layer leads to a relative error $il)/#io) = O((a/s)2). 
This is small in the region of validity of the present analysis as given by (4). 

The surface boundary conditions for (3) are obtained by asymptotic matching 
with the inner boundary layer. For large R,, in the usual boundary-layer sense, 
this condition is applied a t  the surface of the cylinder. A t  large distances from the 
cylinder free-stream conditions are approached and the perturbation velocities 
vanish. 

The details of the analysis are presented in the next section for incompressible 
viscous flow over a cylinder with constant elliptic-cross-section; see also Rubin 
& Mummolo (1973). The complete solution is described in terms of the eccen- 
tricity e and the axisymmetric ( e  = 0 )  and flat-plate ( e  = 1) limits are obtained. 
A particularly simple form of the solution results for cross-sections that are 
nearly circular ( e  < 1). The flat-plate limit is compared with the three-dimen- 
sional solution obtained from an extension of the quarter-plate analysis of 
Stewartson & Howarth (1960). 

10-2 
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2. Solution for an elliptic cylinder 
Consider incompressible flow over a cylinder of constant elliptic cross-section. 

The generators of the cylinder are taken parallel to the free stream with 1 > s > 0 
(figure 1) .  The Reynolds number based on the semi-major axis is sufficiently 
large that boundary-layer theory applies in the usual manner. It is assumed here 
that the transverse curvature of the cross-section is small with respect to the 
boundary-layer thickness. At the ends of a highly eccentric elliptic cross-section 
or, in a limiting case, at the edges of a plate of zero thickness this condition is 
violated locally and singular boundary regions appear. However, to lowest order 
in R;t 4 1, the viscous boundary regions do not affect the flow behaviour in the 
adjoining quasi-two-dimensional boundary layers or the outer inviscid potential 
flow (see Rubin 1966). 

The lowest-order boundary-layer solution due to Cooke (1957),  valid down- 
stream of a leading edge or nose region and away from boundary regions, is identi- 
cal with the constant-pressure flat-plate boundary-layer results of Blasius; see 
Van Dyke (1964, p. 129). Transverse curvature enters only in higher-order 
approximations. It is sufficient to note here that the displacement velocity v 
normal to the surface induced by viscosity has the following asymptotic be- 
haviour for large values of the boundary-layer variable 7 = @( U/2vs)*: 

lim {v(s, 7 ) / U }  N 0.860/R$. 
7-+m 

The displacement thickness A* as defined in (1) is given by 

A* = 1 * 7 2 ~ / R t .  ( 6 b )  

For large Reynolds numbers R, 9 1 the inviscid outer flow is only slightly 
perturbed by the formation of the thin boundary layer on the surface and there 
fore the solution for the incompressible displacement-induced potential flow can 
be determined from (3). 

A far-field velocity decay condition 

applies at large distances from the body and a smooth match with the inner 
boundary layer must be prescribed. VZB is the two-dimensional gradient opera- 
tor in the y, z plane. The surface matching condition is specified by 

where n is the unit vector normal to the surface in the y, z plane. 
In  general, the solution of (3) satisfying ( 7 )  can be investigated with conformal 

mapping techniques. Since only an elliptic cross-section is considered here, i t  is 
convenient to transform directly to an elliptic co-ordinate frame. The general 
solution for the ‘two-dimensional ’ potential r$ in this co-ordinate frame is then 
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FIUURE 2. Elliptic co-ordinates. 0 < E < co, 0 < 0 < 2n. 

where ( ( ,8)  are elliptic co-ordinates (see figure 2) defined by 

z = c cosh ( cos 8, y = c sinh (sin 8, (9a, b)  

r2 = y2+z2, w = tan-l(y/z), ( 9 4  

with c2 = a2 - b2 and e = c/a = (cosh ()-l, where a and b are the lengths of the 
semi-major and semi-minor axes, respectively, and e is the eccentricity of the 
elliptic section. 

The boundary condition (7  b )  becomes 

lim [c (cosh2(- cos2 8)iI-l a$((, 8 ;  s)/aE = (O.SSO/R$) (a/s)i  = dA*/ds, 
5-40 

(10) 

where the surface is denoted by the ellipse ( = to. 
The coefficients a, are defined by 

where aq5(E0, 8; s)/ag is determined from (10). The coefficient 27ra0 can be shown to 
represent the streamwise (s )  derivative of the ‘effective ’ cross-sectional surface 
area of the cylinder formed by the ellipse plus the displacement layer of thickness 
A* and denoted here as X’(s).t This result is exact when the boundary condition 
(7 b) is satisfied at the displacement surface. In  general, when the boundary con- 
dition is transferred to the surface, as given by ( lo) ,  a, differs from #‘(a) by a term 
of order (A*/a)2.  This difference is negligible in the present analysis but would 
reappear if higher-order solutions for the outer inviscid flow were considered. 
Therefore, the surface-area terms X’(s) in (5) are represented by 

c (cosh2 (- cos2 8)*d8 

or s l ( s )  = 4aE(&~, e )  dA*/ds, ( 1 2 4  

f This result can easily be proved by a mms conservation argument. 
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where E is a complete elliptic integral of the second kind, defined in Gradshteyn 
& Ryzhik (1965, p. 909). 

Two limiting cases are the following. 
(i) For a circle of radius a, c + 0 and c cosh 5, -+ a, so that 

S'(S) = 2 ~ ~ d A " / d s .  (12b) 

S'(s) = 4adA"Ids. ( 1 2 4  

(ii) For a flat plate of span 2 4  b -+ 0,  c -+ a, to -+ 0 and (12a) gives 

The coefficient co(s) in (8) is defined so that the expressions ( 5 )  obtained by 
Ward (1955, p. 199) are applicable in that form; see Kahane & Solarski (1953). 

co(s) = a,(s)ln+c. 

Therefore, using (5) and (lo)-( 12) and noting that odd coefficients a2n+l vanish, 
the solution for 6 becomes 

Previous boundary-layer analyses of transverse curvature effects on cylinders 
of circular and more general cross-section have erroneously neglected these dis- 
placement-induced boundary conditions, e.g. Cooke (1957) and Seban & Bond 
(1951). A discussion of the errors arising from the neglect of these displacement 
effects for the case of a circular cylinder was given by Van Dyke (1970). The 
complete boundary-layer analysis is currently under way. 

For the remainder of the present paper, the solutions ( 1 4 )  for the induced 
velocities will be discussed for varying eccentricities. The limiting circular and 
flat-plate results will be obtained for comparison with known exact solutions. 
This will establish the validity of the application of slender-body theory to the 
boundary-layer-induced potential problem considered herein and serve as a, 
model for examinations of more complex cross-sections for which exact three- 
dimensional solutions are not at  present available. 



Potential $ow on an  elliptic cylinder 151 
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FIGURE 3. Flat-plate geometry. 

2.1. Flat plate 

The flat plate is the simplest geometry for which displacement-induced cross- 
flows appear. With the formulation presented herein, the surface velocities 
can be evaluated from the general solution (14) for the elliptic cylinder by the 
limiting process to + 0, c -+ a. The solution for a flat plate can also be found 
directly using the quasi-two-dimensional slender-body theory discussed here or 
a complete three-dimensional formulation. This latter approach has been con- 
sidered by Stewartson & Howarth (1960) for a quarter-infinite flat plate and is 
readily extended t o  the finite-span case. 

Consider a plate of span 2a as shown in figure 3. Away from the side edge bound- 
ary regions, a Blasius boundary layer forms on the plate. The induced velocities 
a t  the surface can be obtained by a simple extension of the three-dimensional 
method of Stewartson & Howarth (1960). 

On the plate y = 0, with a/s  < 1, the cross-flow velocity takes the form 

Along the plate centre-line y = x = 0 and with a/s < 1, the streamwise perturba- 
tion becomes 

while a t  the plate edge we obtain 

The flat-plate limit is obtained from the general solution (14) for the elliptic 
cylinder by setting to = 0 and noting from (1 2 c )  that 
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The streamwise perturbation velocity (14a) on the plate centre-line 8 = $n- 
becomes 

At the edge, (15c) is recovered. See Gradshteyn & Ryzhik (1965, p. 46). 
The cross-flow on the plate is given by 

c- 
It is easily shown that 

4 sin2n8 
Isin81 n=l 4n2- 1 

E- = In rc~), 
where from (9  b )  z = a cos 8. Therefore 

The results (16) and (17) are in exact agreement with the leading terms in the 
three-dimensional solutions (15). 

The slender-body solution for the induced velocities on a flat plate has also 
been determined by direct application of a two-dimensional Green's function. 
Equations (15) are recovered (see Rubin & Mummolo 1973). 

2.2. Quasi-axisymmetric Jlow 

For geometries where the cross-sections are nearly circular (e < l), the leading 
terms in an expansion of (14) for small e take a particularly simple form. We find 
that 

and 

where from (12) 

The relation 
S'(s) = (1.72n-a/R2) (1 - ae2) + O(e4). 

0 for m < n 
C O S ~ ~  x cos 2nx dx = 

has been used to obtain (18 b) and is useful if additional terms in the expansion 
are desired. The series in (14) reduce to n terms for the e2n coefficient. The expres- 
sions (18) are valid for e < 1 and will be compared with the general solutions, for 
arbitrary e, to be discussed in the following section. The axisymmetric solutions 

t Here b;(s) denotes the derivative of ( 5 b )  in the limit I --f or). 
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( e  = 0 )  have previously been obtained by Van Dyke (1970), who also discussed 
the second-order boundary layer and corrected an earlier paper by Seban & 
Bond (1951). 

Finally, the special limiting case a -+ A*, e --f 0 of a needle leads to the flow 
over a slender paraboloid of revolution. While the Blasius boundary layer is 
incorrect in this limit (see Glauert & Lighthill 1955), the exact solution for a para- 
boloid is known and provides an additional check on the theory (Van Dyke 
1964, p. 75). With the cylindrical radius defined by 

R,(s) = (2e2s)4 

$ = &e2 In ( r2/2s2s) Van Dyke has shown that 

and 
c2 R, dR, 

u 2s 2s as - - --- U -= - - -  

From (5), ( 1 4 a )  and ( 1 2 b )  with a = A*, we obtain for 1 -+ a 

_ -  U I  A* dA* - b,(s) = --- 
U 2s as . 

With the cylindrical radius R,(s) set equal to the effective body radius or dis- 
placement thickness A* we see that (1 9) and (20) are identical. 

2.3. Elliptic cylinder 

The flow properties a t  the surface of a cylinder of elliptic cross-section with 
arbitrary eccentricity e have been determined by numerical evaluation of an 
appropriate number of terms in the series solutions (14). The integrals in (14) 
can be expressed by means of recursion relations in terms of elliptic integrals 
of the first and second kind; see Gradshteyn & Ryzhik (1965, p. 159). It was 
more convenient to evaluate the integrals directly by numerical integration. 
A three-point Simpson's rule having a nominal error of order h4 was used; 
h represents the grid spacing. As n increases, the integrand exhibits rapid oscilla- 
tions and an increased number of mesh points is required. In  order to maintain 
a fixed error, twelve intervals were always located between the zeros of cos 2n8, 
so that 24N + 1 points result for n = N .  

The number N of terms required to achieve a specified degree of accuracy 
increases sharply as e 3 I .  The summation was terminated when percentage 
differences in the sums of X and S -t 5 terms were less than 10-10. The singular 
behaviour in the flat-plate limit and in particular near the side edge is not un- 
expected. For e = 1 a logarithmic singularity in the cross-flow velocity (14b)  
appears at the edge, while for e < I ,  w -+ 0. Also, the asymptotic form of the 
integrals in (14) shows that e = 1 is a singular limit, since 

o ( A ( e ) )  n-M for any finite M > 0 with e < I ,  

-(4n2-1)-I  for e = 1.  
lim /o'n (1 - e2 cos2 O)* cos 2nO dO N 

n+m 

The asymptotic form for e = 1 is also obvious from the exact solution ( 1 5 ~ ) .  
The numerical solutions for the cross-flow velocity are depicted in figure 4 and 

confirm the asymptotic predictions. Note the large increase in the maximum 
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FIGURE 4. Cross-flow. a13 = 0.1. 

number N,,, of terms required for the series solution as e .+ I. For e = 0.999, the 
solution closely follows the flat-plate logarithmic behaviour before falling rapidly 
near the edge. The solution exhibits boundary-layer behaviour near the edge, 
the peak cross-flow velocity approaching the edge as e -+ 1. The maximum 
number of terms required for the series summation generally occurs a t  a location 
corresponding to the peak w value. A boundary region forms near the edge 
and the three-dimensional viscous flow must be re-evaluated. 

Similar behaviour for the streamwise velocity perturbation is shown in figure 
5. While the streamwise velocity distribution is continuous as e -+ 1, the velocity 
gradient also exhibits a logarithmic singularity. Also depicted on figures 4 and 5 
are solutions for several values of e between zero and one. The simple quasi- 
axisymmetric expansions for e < 1 are given by (184  and (18b) and are shown in 
figures 6 and 7. The one-term expansions agree quite well with the numerical 
solutions for e Q 0.25. 

3. Summary 
In  order to  analyse the perturbation velocities, and in particular the cross- 

flows induced by thin boundary layers on three-dimensional bodies, a difficult 
potential problem must be solved. To date, there are only a very small number 
of such exact solutions available. When considering the flow over an elliptic 
cylinder, it  has been shown herein that slender-body theory, for many years a 
powerful tool of classical aerodynamics, can be adapted for the determination of 
the boundary-layer-induced potential flow. In  essence, the potential problem is 
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FIGURE 5. Streamwise perturbation. a/s = 0.1. 
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FIGURE 6. Streamwise peI-turbation. a18 = 0.1. - , numerical solution; - - - , quasi- 
axisymmetric t,heory, equation (18a).  Right- and left-hand ordinate scales apply to right- 
and left-hand pairs of curves respectively. 
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0 (rad) 

FIGURE 7. Cross-flow. a1.s = 0.1. - , numerical solution; --- , quasi-axisymmetric 
theory, equation ( 1 8 b ) .  Right- and left-hand ordinate scales apply to lower and upper pairs 
of curves respectively. 

reduced to the consideration of a two-dimensional flow over an expanding body 
with porous boundary conditions. This results in a considerable simplification. 

Complete solutions have been obtained for the flow over an elliptic cylinder in 
the form of a Fourier series. For the limiting cases of a finite-span flat plate and 
nearly circular geometry simplified analytic forms have been obtained. The 
surface solutions for the plate are in agreement with the exact three-dimensional 
result obtained by a simple extension of the method of Stewartson & Howarth 
(1960). 

In  the general case, a peak in the cross-flow velocity is predicted. The location 
of this maximum moves towards the side region of the ellipse as the eccentricity 
e + 1. In  this limit the cross-flow exhibits a logarithmic behaviour, correspond- 
ing to the flat-plate solutions, up to the peak location and then falls rapidly to 
zero at the symmetry line. For e --f 1, the application of a Blasius boundary 
condition near the edge is incorrect, as the transverse curvature is quite large 
there. Further studies will have to consider the side edge flow more exactly in 
order t o  determine the precise nature of the developing boundary region where 
curvature and cross-diffusion effects become important. It is believed that this 
slender-body procedure will be applicable to a wider class of cylindrical geo- 
metries where both the thin-boundary-layer and slender-body restrictions are 
satisfied. 

This research was supported by the Air Force Office of Scientific Research, 
Office of Aerospace Research, under Grant AFOSR 70-1843, Project 9781-01. 
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The work reported here was based on part of a dissertation submitted by the 
second author to the faculty of the Polytechnic Institute of New York in partial 
fulfilment of the requirements for the Ph.D. degree (Aeronautics and Astro- 
nautics), 1974. 
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